Formation, Isolation, Spectroscopic Properties, and Calculated Properties of Some Isomers of C₆₀H₃₆

Jamie Nossal,† Rajesh K. Saini,† Anil K. Sadana,† Holger F. Bettinger,† Lawrence B. Alemany,† Gustavo E. Scuseria,† W. E. Billups,*,† Martin Saunders,‡ Anthony Khong,‡ and Ruediger Weisemann§

Contribution from the Department of Chemistry, Rice University, Houston, Texas 77005, Yale University, New Haven, Connecticut 06520, and Bruker Analytische Messtechnik GmbH, D-76287 Rheinstetten, Germany

Received March 28, 2001

Abstract: Isomers of C₆₀H₃₆ and He@C₆₀H₃₆ have been synthesized by the Birch or dihydroanthracene reduction of C₆₀ and isolated by preparative high-pressure liquid chromatography. ³He, ¹³C, and ¹H NMR spectroscopic properties were then determined. A comparison of experimental chemical shifts against those computed using density functional theory (B3LYP) with polarized triple- and double- ζ basis sets for He and C.H, respectively, allowed provisional assignment of structure for several isomers to be made. Theoretical calculations have also been carried out to identify low-energy structures. The transfer hydrogenation method using dihydroanthracene gives a major $C_{60}H_{36}$ isomer and a minor $C_{60}H_{36}$ isomer with C_3 symmetry as determined by the ¹³C NMR spectrum of $C_{60}H_{36}$ and the ³He NMR spectrum of the corresponding sample of ³He@ $C_{60}H_{36}$. In view of the HPLC retention times and the ³He chemical shifts observed for the Birch and dihydroanthracene reduction products, the two isomers generated by the latter procedure can be only minor isomers of the Birch reduction. A significant energy barrier apparently exists in the dihydroanthracene reduction of C₆₀ for the conversion of the C_3 and C_1 symmetry isomers of $C_{60}H_{36}$ to the T symmetry isomer previously predicted by many calculations to be among the most stable $C_{60}H_{36}$ isomers. Many of the ¹H NMR signals exhibited by $C_{60}H_{36}$ (and $C_{60}H_{18}$, previously reported) are unusually deshielded compared to "ordinary" organic compounds, presumably because the unusual structures of $C_{60}H_{36}$ and $C_{60}H_{18}$ result in chemical shift tensors with one or more unusual principal values. Calculations clearly show a relationship between exceptionally deshielded protons beta to a benzene ring in C₆₀H₁₈ and C₆₀H₃₆ and relatively long C-C bonds associated with these protons. The additional information obtained from 1D and 2D ¹H NMR spectra obtained at ultrahigh field strengths (up to 900 MHz) will serve as a critical test of chemical shifts to be obtained from future calculations on different C₆₀H₃₆ isomers.

Introduction

The first derivatives of C_{60} were prepared by the Birch reduction of the fullerene in 1990.¹ Mass spectral evidence for $C_{60}H_{36}$ was presented, and despite early skepticism,^{2,3} this work has been repeated successfully in several laboratories.^{4,5} Extensive studies, both computationally and experimentally, to determine the structure of these hydrides have been reported,^{6–14}

- † Rice University.
- [‡] Yale University.
- § Bruker Analytische Messtechnik GmbH.
- (1) Haufler, R. E.; Conceicao, J.; Chibante, L. P. F.; Chai, Y.; Byrne, N. E.; Flanagan, S.; Haley, M. M.; O'Brien, S. C.; Pan, C.; Xiao, Z.; Billups, W. E.; Ciufolini, M. A.; Hauge, R. H.; Margrave, J. L.; Wilson, L. J.; Curl, R. F.; Smalley, R. E. *J. Phys. Chem.* **1990**, *94*, 8634.
- (2) Taylor, R. In *The Fullerenes*, Kroto, H. W., Walton, D. R. M., Eds.; Cambridge University Press: Cambridge, 1993, 87.
- (3) Banks, M. R.; Dale, M. J.; Gosney, I.; Hodgson, P. K. G.; Jennings, R. C. K.; Jones, A. C.; Lecoultre, J.; Langridge-Smith, P. R. R.; Maier, J. P.; Scrivens, J. H.; Smith, M. J. C.; Smyth, C. J.; Taylor, A. T.; Thorburn, P.; Webster, A. S. *J. Chem. Soc., Chem. Commun.* **1993**, 1149.
- (4) Billups, W. E.; Gonzalez, A.; Gesenberg, C.; Luo, W.; Marriot, T.; Alemany, L. B.; Saunders, M.; Jiménez-Vázquez, H. A.; Khong, A. *Tetrahedron Lett.* **1997**, *38*, 175.
- (5) Vasil'ev, Y.; Wallis, D.; Nüchter, M.; Ondruschka, B.; Lobach, A.; Drewello, T. Chem. Commun. 2000, 1233.
 - (6) Rathna, A.; Chandrasekhar, J. Chem. Phys. Lett. 1993, 206, 217.
- (7) Dunlap, B. I.; Brenner, D. W.; Schriver, G. W. J. Phys. Chem. 1994, 98, 1756.

but characterization has proven to be extremely difficult. In this paper, we present results that show that the product obtained from the Birch reduction is a mixture composed mostly of several isomers of $C_{60}H_{36}$ and the product obtained from the dihydroanthracene reduction consists mostly of a single $C_{60}H_{36}$ isomer with C_1 symmetry and a minor $C_{60}H_{36}$ isomer with C_3 symmetry.

Background. Analysis by mass spectroscopy of the buff-colored solid obtained by the Birch reduction of C_{60} showed that the product was primarily $C_{60}H_{36}$, along with some $C_{60}H_{18}$. When the crude product was treated with DDQ in refluxing toluene, the red color of the DDQ—toluene complex was

- (8) Clare, B. W.; Kepert, D. L. *J. Mol. Struct. (THEOCHEM)* **1994**, *303*, 1.
- (9) Clare, B. W.; Kepert, D. L. J. Mol. Struct. (THEOCHEM) 1994, 304, 181.
- (10) Clare, B. W.; Kepert, D. L. J. Mol. Struct. (THEOCHEM) 1994, 315, 71.
- (11) Fowler, P. W.; Sandall, J. P. B.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1997, 419.
- (12) Lobach, A. S.; Perov, A. A.; Rebrov, A. I.; Roshchupkina, O. S.; Tkacheva, V. A.; Stepanov, A. N. Russ. Chem. Bull. 1997, 46, 641.
- (13) Lobach, A. S.; Shul'ga, Y. M.; Roshchupkina, O. S.; Rebrov, A. I.; Perov, A. A.; Morozov, Y. G.; Spector, V. N.; Ovchinnikov, A. A. Fullerene Sci. Technol. 1998, 6, 375.
- (14) Clare, B. W.; Kepert, D. L. J. Mol. Struct. (THEOCHEM) 1999, 466, 177.

Figure 1. Schlegel diagrams of 15 isomers of $C_{60}H_{36}$. Isolated heavy lines indicate C=C bonds. A hexagon outlined in heavy lines indicates a benzene ring. The intersection of three light lines represents a methine carbon with three C-C bonds.

discharged with the concomitant formation of C_{60} . Mass spectral analysis confirmed that the product was C_{60} and that the Birch reduction did not involve alteration of the fullerene skeleton.

The addition of 36 hydrogens was not considered surprising, because the Birch reduction is known not to hydrogenate unconjugated double bonds, 15 and 36 is the minimum number of hydrogens required to leave unconjugated double bonds within each of the 12 pentagons. This arrangement leads to $C_{60}H_{36}$ isomer 1 (Figure 1) with 12 unconjugated double bonds. This isomer is now known from semiempirical and ab initio computations to be a high-energy one relative to some of the other possible structures illustrated in the text.^{6-8,11,14,16} It was eventually established that with increasing hydrogenation of $C_{60}H_n$, the bond angle strain resulting from sp² to sp³ hybridization will decrease as strain due to hydrogen-hydrogen repulsion increases and that the combined strain reaches a minimum when n = 36.17 Balasubramanian estimated that there are 6.0×10^{14} isomers of C60H36.18 Clare and Kepert, who have catalogued about one hundred isomers, 8-10,14 have found that the 10 most stable isomers all lie energetically within less than 15 kcal mol⁻¹ at the semiempirical AM1 level of theory. 14 However, our higher level B3LYP/6-31G* computations reported here give an energy range of 49 kcal mol⁻¹ for the same set of isomers.

Characterization of the highly reduced fullerenes is difficult, because these materials are unstable toward light and air, \$4,16,19-23\$ especially in solution. \$12,13,21,22\$ Identification of the molecular ions under electron impact conditions requires \$3,24,25\$ that the spectra be obtained using carefully prepared samples immediately after workup. \$4,12,13,20-22\$ Field desorption mass spectroscopy has been reported to give spectra with minimal fragmentation of the molecular ion relative to other techniques. \$25\$

Difficulties with product stability led to some initial debate as to whether $C_{60}H_{36}$ was the primary product of the Birch reaction, 2,3 but later work confirmed that $C_{60}H_{36}$ was the major product when APCI, CI, and EI mass spectra of the products were recorded immediately after workup. 4,5 The ^{1}H NMR spectrum of the crude product appears as a broad, $^{12,21,26-28}$

⁽¹⁵⁾ Kaiser, E. M. Synthesis 1972, 391.

⁽¹⁶⁾ Book, L. D.; Scuseria, G. E. J. Phys. Chem. 1994, 98, 4283.

⁽¹⁷⁾ Yoshida, Z.; Dogane, I.; Ikehira, H.; Endo, T. Chem. Phys. Lett. 1992, 201, 481.

⁽¹⁸⁾ Balasubramanian, K. Chem. Phys. Lett. 1991, 182, 257.

⁽¹⁹⁾ Becker, L.; Evans, T. P.; Bada, J. L. *J. Org. Chem.* **1993**, *58*, 7630. (20) Taylor, R.; Walton, D. R. M. *Nature* **1993**, *363*, 685.

⁽²¹⁾ Darwish, A. D.; Abdul-Sada, A. K.; Langley, G. J.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. *J. Chem. Soc., Perkin Trans.* 2 **1995**, 2359.

⁽²²⁾ Darwish, A. D.; Abdul-Sada, A. K.; Langley, G. J.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. *Synth. Metals* **1996**, *77*, 303.

⁽²³⁾ Drelinkiewicz, A.; Byszewski, P.; Bielanski, A. React. Kinet. Catal. Lett. 1996, 59, 19.

⁽²⁴⁾ Attalla, M. I.; Vassallo, A. M.; Tattam, B. N.; Hanna, J. V. J. Phys. Chem. 1993, 97, 6329.

⁽²⁵⁾ Rüchardt, C.; Gerst, M.; Ebenhoch, J.; Beckhaus, H.-D.; Campbell, E. E. B.; Tellgmann, R.; Schwarz, H.; Weiske, T.; Pitter, S. *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 584.

⁽²⁶⁾ Shigematsu, K.; Abe, K. Chem. Express 1992, 7, 905.

⁽²⁷⁾ Shigematsu, K.; Abe, K.; Mitani, M.; Tanaka, K. Fullerene Sci. Technol. 1993. 1, 309.

⁽²⁸⁾ Govindaraj, A. Curr. Sci. 1993, 65, 868.

sometimes 21,28 almost featureless, signal between δ 2.5 and δ 4.2. The nearly featureless NMR spectrum of the crude product has been attributed variously to the presence of several isomers, the presence of hydrides other than $C_{60}H_{36}$ or a rapid isomerization or decomposition of the products. 1,3,12,21,26,27

Rüchardt and co-workers have shown that it is possible to selectively synthesize either $C_{60}H_{18}$ or $C_{60}H_{36}$ by transfer hydrogenation of C_{60} . A comparison of experimental and simulated infrared and Raman spectra of five $C_{60}H_{36}$ isomers led Rüchardt and co-workers to conclude that the products of this reduction are a mixture of D_{3d} 2 and S_6 3 isomers (Figure 1). Somers are a mixture of D_{3d} isomer 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known. Some 2 is among the most stable $C_{60}H_{36}$ isomers known.

Attalla and co-workers treated fullerite (ca. 85% C_{60} , remainder C_{70} and higher fullerenes) with iodoethane and hydrogen at high pressure and temperature. The FAB-MS spectrum showed strong signals at m/e 757 and 877 that correspond to the M + 1 adducts of $C_{60}H_{36}$ and $C_{70}H_{36}$, respectively. Although detailed analysis was complicated by poor solubility and the presence of products formed from C_{70} , isomer 4 having D_{3d} symmetry (Figure 1) was proposed. Other work including electron and X-ray diffraction studies also supports the assignment of the D_{3d} 4 structure. 33

Darwish and co-workers reported that zinc and hydrochloric acid in aromatic solvents can be used to reduce C_{60} . ^{21,22} Although the T structure **5** (Figure 1) had previously been proposed as the major product, ^{2,34} analysis of the infrared spectrum led Rüchardt and co-workers to conclude that isomer **3** was the best candidate for $C_{60}H_{36}$ prepared by Zn reduction of C_{60} in aromatic solvents. ³¹ Nevertheless, the T structure **5** with four benzenoid rings located at the tetrahedral corners of the cage is one of the most stable $C_{60}H_{36}$ isomers. $^{6-14,16,35,36}$

A major advance in the identification of fullerene derivatives was achieved when it was reported³⁷ that ³He can be introduced into C_{60} and C_{70} by heating the fullerenes at 620 °C under high helium pressure. Because ³He is an excellent NMR nucleus with

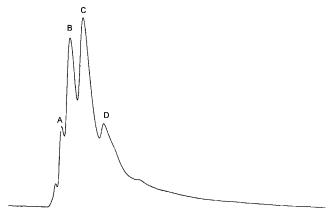


Figure 2. HPLC chromatogram of the products from the Birch reduction of C_{60} .

a spin of 1/2 and a high gyromagnetic ratio, 38 the 3 He NMR spectrum of each product will yield a single sharp peak, and no nonfullerene products or impurities will give signals. 37 Bühl, Thiel, and Schneider 35 have suggested that 3 He labeling and NMR, assisted by computation of the 3 He chemical shifts, might provide new information concerning the nature of highly reduced C_{60} formed either by dissolving metal reductions or by transfer hydrogenation.

³He NMR spectra of the crude product from the lithium Birch reduction have been reported.⁴ Signals were observed at $\delta_{\text{He}} = -7.7$ and -7.8 ppm. A comparison with the endohedral NMR shifts computed by Bühl and co-workers³⁵ at the GIAO-SCF/tzp(He),dz(C,H)//SCF/3-21G level for five isomers of ³He@C₆₀H₃₆ suggested that the major product was D_{3d} C₆₀H₃₆ isomer 2 that was predicted to exhibit a signal at -7.7 ppm. The less intense signal at -7.8 ppm most closely matched S_6 C₆₀H₃₆ isomer 3 that was calculated to appear at -6.1 ppm, although Billups and co-workers⁴ noted that the less intense signal at -7.8 ppm might result from a structure not previously considered. However, subsequent results have shown that the major isomers decompose in the solvent (carbon disulfide) that was used to secure these spectra. In this paper, we present an account of our recent work in this area.

Results and Discussion

Birch Reduction. The mixture of hydrogenated fullerenes obtained from the Birch reduction of C_{60} has been separated and purified by high-pressure liquid chromatography in quantities suitable for spectral investigation (Figure 2). Mass spectra of the purified fractions showed that $C_{60}H_{36}$ is the only component in the major B and C bands. The small A band is a mixture of $C_{60}H_{38}$ and $C_{60}H_{40}$. The broad D band contained a small amount of $C_{60}H_{32}$ along with $C_{60}H_{36}$. The distribution of products did not change when the reaction time was extended to 24 h.

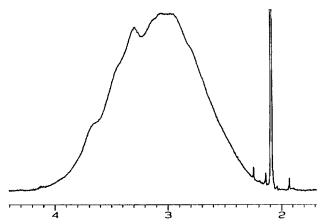
The 1 H NMR spectra of bands B and C are presented in Figures 3 and 4, respectively. These broad, nearly featureless spectra could be reproduced over the course of several syntheses and purifications. No rearrangement or isomerization could be detected at -100 $^{\circ}$ C, because the 1 H NMR spectra retained the same features that were observed at room temperature. These results are consistent with our calculations at the B3LYP/6-31G* level of theory (see Technical Methods section) that estimate a barrier of ~ 100 kcal mol $^{-1}$ for each of two [1,2]-H

⁽²⁹⁾ Gerst, M.; Beckhaus, H.-D.; Rüchardt, C.; Campbell, E. E. B.; Tellgmann, R. *Tetrahedron Lett.* **1993**, *34*, 7729.

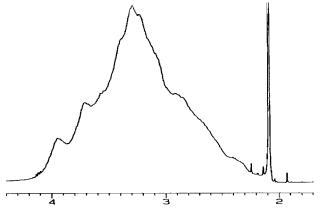
⁽³⁰⁾ Bensasson, R. V.; Hill, T. J.; Land, E. J.; Leach, S.; McGarvey, D. J.; Truscott, T. G.; Ebenhoch, J.; Gerst, M.; Rüchardt, C. *Chem. Phys.* **1997**, 215, 111.

⁽³¹⁾ Bini, R.; Ebenhoch, J.; Fanti, M.; Fowler, P. W.; Leach, S.; Orlandi, G.; Rüchardt, Ch.; Sandall, J. P. B.; Zerbetto, F. *Chem. Phys.* **1998**, *232*, 75.

⁽³²⁾ Meletov, K. P.; Assimopoulos, S.; Tsilika, I.; Bashkin, I. O.; Kulakov, V. I.; Khasanov, S. S.; Kourouklis, G. A. *Chem. Phys.* **2001**, *263*, 379


⁽³³⁾ Hall, L. E.; McKenzie, D. R.; Attalla, M. I.; Vassallo, A. M.; Davis,
R. L.; Dunlop, J. B.; Cockayne, D. J. H. *J. Phys. Chem.* 1993, 97, 5741.
(34) Austin, S. J.; Batten, R. C.; Fowler, P. W.; Redmond, D. B.; Taylor,
R. *J. Chem. Soc., Perkin Trans.* 2 1993, 1383.

⁽³⁵⁾ Bühl, M.; Thiel, W.; Schneider, U. J. Am. Chem. Soc. 1995, 117, 4623.


⁽³⁶⁾ Okotrub, A. V.; Bulusheva, L. G.; Asanov, I. P.; Lobach, A. S.; Shulga, Y. M. *J. Phys. Chem. A* **1999**, *103*, 716.

^{(37) (}a) Saunders, M.; Jiménez-Vázquez, H. A.; Cross, R. J.; Poreda, R. J. Science 1993, 259, 1428. (b) Saunders, M.; Jiménez-Vázquez, H. A.; Cross, R. J.; Mroczkowski, S.; Freedberg, D. I.; Anet, F. A. L. Nature 1994, 367, 256. (c) Saunders, M.; Jiménez-Vázquez, H. A.; Bangerter, B. W.; Cross, R. J.; Mroczkowski, S.; Gross, M. L.; Giblin, D. E.; Poreda, R. J. J. Am. Chem. Soc. 1994, 116, 2193. (d) Saunders, M.; Jiménez-Vázquez, H. A.; Bangerter, B. W.; Cross, R. J.; Mroczkowski, S.; Freedberg, D. I.; Anet, F. A. L. J. Am. Chem. Soc. 1994, 116, 3621. (e) Saunders, M.; Cross, R. J.; Jiménez-Vázquez, H. A.; Shimshi, R.; Khong, A. Science 1996, 271, 1693. (f) Cross, R. J.; Jiménez-Vázquez, H. A.; Lu, Q.; Saunders, M.; Schuster, D. I.; Wilson, S. R.; Zhao, H. J. Am. Chem. Soc. 1996, 118, 11454 and references therein.

^{(38) (}a) Schrobilgen, G. J. In *NMR and the Periodic Table*; Harris, R. K., Mann, B. E., Eds.; 439; Academic: New York, 1976. (b) Seydoux, R.; Diehl, P.; Nazitov, R. K.; Jokisaari, J. *J. Magn. Reson.* **1993**, *101*, 78.

Figure 3. 1 H NMR spectrum (400 MHz, o-C₆D₄Cl₂) of C₆₀H₃₆, band B. The signal at 2.09 ppm arises from residual toluene.

Figure 4. ¹H NMR spectrum (400 MHz, o-C₆D₄Cl₂) of C₆₀H₃₆, band C. The signal at 2.09 ppm arises from residual toluene.

shifts for isomerizing a double bond via a diradical intermediate to an adjacent position in a typical $C_{60}H_{36}$ isomer.

The ¹³C NMR and DEPT-135 ¹³C NMR spectra of band B could not be obtained in solution because of decomposition of the sample during the long acquisition time. Band C exhibited

a broad signal at 20–40 ppm in both experiments. Broad signals for the sp²- and sp³-hybridized carbons have been previously observed in a 13 C spectrum of $C_{60}H_{36}$ prepared by the Birch reduction of C_{60} .²⁸

Because the hydrides are moderately stable in the solid state, it was possible to obtain solid state 13 C NMR spectra of bands B and C. These are presented in Figures 5 and 6, respectively. Although the broad signal observed in the sp³ region of each sample offered little information, the sp² region of each sample shows at least three overlapping signals whose relative intensities clearly differ in samples B and C. The spectrum of band C is somewhat similar to the one published previously by Attalla and co-workers that was found to be consistent with D_{3d} symmetry. 24,33

³He NMR spectra of samples obtained from Birch reduction of He@C₆₀ and isolated by preparative HPLC were obtained for bands A–D (Figure 2). o-Dichlorobenzene- d_4 proved to be a superior solvent for this work, since extensive decomposition that was observed in our earlier⁴ work using carbon disulfide can be avoided when o-dichlorobenzene- d_4 is used. In addition, fullerene hydrides exhibit greater solubility in this solvent than in other common solvents.

The ³He NMR spectra of the purified fractions gave slightly broadened, but distinctly different, signals for each band (Figure 7a–d). Band A (³He@C₆₀H₃₈/³He@C₆₀H₄₀) gave a weak signal at $\delta_{\text{He}} = -3.2$ to -4.0. Bands B (³He@C₆₀H₃₆) and C (³He@C₆₀H₃₆) gave broad signals at $\delta_{\text{He}} = -4.6$ to -5.8 and $\delta_{\text{He}} = -6.0$ to -6.8, respectively, and the spectrum of band D (³He@C₆₀H₃₂/³He@C₆₀H₃₆) was observed at $\delta_{\text{He}} = -7.6$ to -8.4.

The broad signals observed are most probably due to the presence of several isomers that elute under each band. The broad signals for bands B and C are consistent with the broad, nearly featureless ¹H spectra (Figures 3 and 4). Alternatively, decomposition of the sample during acquisition could lead to new compounds, which might broaden the signals. Broadening of the NMR signals might also be observed if the decomposition should result in the formation of paramagnetic products.³⁹

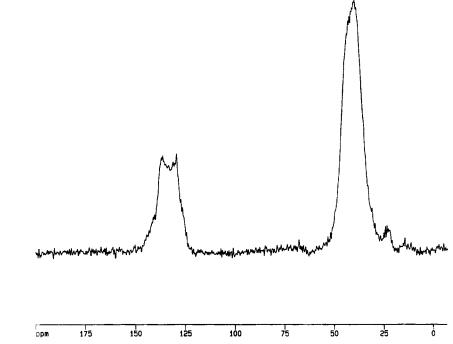


Figure 5. Solid state ¹³C NMR (50 MHz) spectrum of Birch reduction band B.

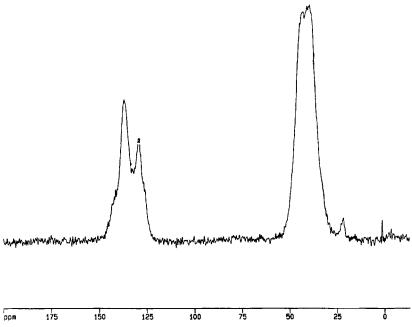


Figure 6. Solid state ¹³C NMR (50 MHz) spectrum of Birch reduction band C.

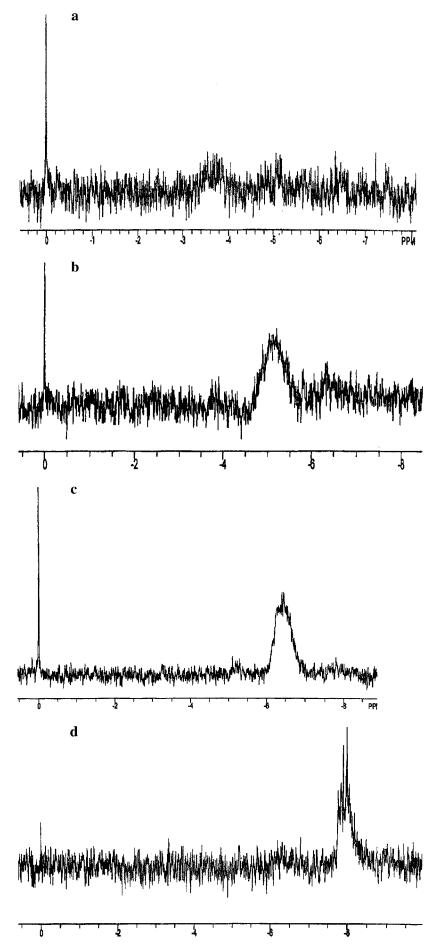
Table 1. Relative Energies (in kcal mol⁻¹) of C₆₀H₃₆ and He@C₆₀H₃₆ Isomers at Various Levels of Theory

isomer ^a	$AM1^{14}$	HF/3-21G	B3LYP/3-21G	B3LYP/6-31G*	B3LYP/tzp(He),DZP(C,H) ^b
	$C_{60}H_{36}$	$C_{60}H_{36}$	$C_{60}H_{36}$	$C_{60}H_{36}$	$He@C_{60}H_{36}$
$2(1), D_{3d}$	11.6	21.1	17.5	16.7	16.4
$3(91), S_6$	13.2	28.7	21.9	19.6	17.5
5 (2), T	12.4	-0.8	-9.5	-14.9	-12.5
6 (74), C ₂	5.4	7.4	6.8	6.1	6.0
7 (88), S_6	0	0	0	0	0
$8 (90), C_3$	8.3	20.6	16.3	14.4	13.8
9 (64), C ₃	4.6	-2.8	-7.3	-9.7	-8.1
10 (3), C_3	not listed	49.0	36.4	30.7	29.4
11 (65), C_3	14.8	18.9	9.6	5.5	5.3
12 (75), C_3	13.5	28.3	29.8	30.2	28.7
13 (78), C ₁	14.7	35.0	34.8	34.1	32.1
14 , C_1	not listed	22.7	13.8	10.0	not yet available
15, C_1	not listed	7.3	0.8	-2.3	not yet available

^a Clare-Kepert isomer numbers (ref 14) are given in parentheses. Molecular point group symmetries are also given. ^b Using the optimized B3LYP/6-31G* geometry.

Lobach has reported that $C_{60}H_{36}$ obtained by reduction of C_{60} with dihydroanthracene is ferromagnetic.¹³

To facilitate the experimental identification, we computed the structure, energies, and ³He chemical shifts of 13 C₆₀H₃₆ and He@C60H36 isomers (see Theoretical Methods section for technical details). A similar approach, albeit with a smaller set of C₆₀H₃₆ isomers and at a lower level of theory, was reported previously by Bühl et al.35 and by Boltalina et al.40 We studied those 10 C₆₀H₃₆ forms found to be most stable by Clare and Kepert at the AM1 level of theory. In addition, we also included the C_3 symmetry isomer previously studied by Boltalina and co-workers⁴⁰ and two additional isomers with C_1 symmetry. In agreement with earlier ab initio computations, 7,16,35 but at variance with the AM1 results of Clare and Kepert, 14 we find that the T isomer 5 is the lowest energy $C_{60}H_{36}$ species considered here (Table 1). Whereas the 10 most stable isomers lie within 15 kcal mol⁻¹ at the AM1 level, the difference between the T form and the least stable C₆₀H₃₆ considered here is 49 kcal mol⁻¹ at the B3LYP/6-31G* level of theory.

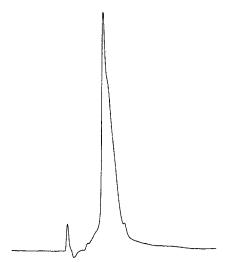

The geometry obtained for the T isomer at B3LYP/6-31G* is similar to those reported earlier.³⁵ In particular, the elongated C—C bonds (1.638 Å) are a characteristic of this isomer. The energetic penalty for stretching these bonds is compensated by the aromatic stabilization energy of the four aromatic rings making this isomer very energetically competitive.

Comparison of the ³He NMR shifts of the different bands with computationally determined values (Table 2) proved to be particularly informative. Isomers with computed (B3LYP/tzp-(He),DZP(C,H))//B3LYP/6-31G*) ³He NMR shifts that fall into the range observed for band B (-4.6 to -5.8 ppm) are S_6 3, C_2 6, S_6 7, and C_3 8 (Figure 1). The calculated shifts for these four isomers are $\delta_{\text{He}} = -4.7$, -5.1, -5.0, and -4.9, respectively (Table 2).

Two benzene rings are a common feature of isomers 3, 6, 7, and 8. Both 7 and 3 have six equatorial double bonds located at 6,5-ring fusions that are either parallel (7) or perpendicular (3) to the pair of benzene rings located at the poles. Isomer 8 can be described as a "hybrid" of 7 and 3, with three equatorial double bonds oriented parallel, as in isomer 7, and three double bonds oriented perpendicular, as in isomer 3. The S_6 C₆₀H₃₆ 3 has been reported to be one of the C₆₀H₃₆ isomers formed by the dihydroanthracene reduction of C₆₀. ^{30,31} Isomer 6 is structur-

⁽³⁹⁾ Brown, D. W.; Floyd, A. J.; Sainsbury, M. Organic Spectroscopy; John Wiley and Sons: New York, 1988, p 87.

⁽⁴⁰⁾ Boltalina, O. V.; Bühl, M.; Khong, A.; Saunders, M.; Street, J. M.; Taylor, R. *J. Chem. Soc., Perkin Trans.* 2 **1999**, 1475.



 $\textbf{Figure 7.} \ \ (a) \ ^{3}\text{He NMR spectrum of band A. (b)} \ ^{3}\text{He NMR spectrum of band B. (c)} \ ^{3}\text{He NMR spectrum of band C. (d)} \ ^{3}\text{He NMR spectrum of band D.} \\$

GIAO-SCF/tzp(He) GIAO-BPW91/tzp(He) GIAO-B3LYP/tzp(He) DZ(C,H)//3-21G35 DZP(C,H)//3-21G40 DZP(C,H) isomer -3.41 n/a n/a 2 -7.7-6.1-6.13 -6.1-4.7n/a 4 -5.6n/a n/a 5 -10.8-8.8-8.8-5.1n/a n/a 7 -5.0n/a n/a 8 n/a n/a -4.9 -9.0^{40} -7.4 -6.8 -8.5^{40} 10 -7.0-6.911 -6.3n/a n/a 12 n/a n/a -3.413 -3.6n/a n/a

Table 2. ³He NMR Chemical Shifts (ppm Relative to Free ³He) for ³He@C₆₀H₃₆ Isomers Calculated at Various Levels of Theory

^a Current work using the optimized B3LYP/6-31G* geometry.

Figure 8. HPLC chromatogram of purified band C showing a trailing shoulder. The small band to the left of the main band is a solvent peak.

ally similar to the celebrated T C₆₀H₃₆ $\bf 5$ isomer in which two of the four benzenoid moieties present in $\bf 5$ have been converted to 1,3,5-C₆H₃ rings.

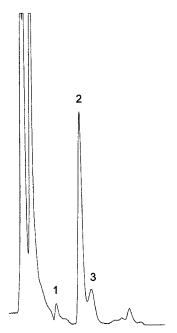
The ³He NMR shift of band C (-6.0 to -6.8 ppm) is in agreement with the values calculated for D_{3d} C₆₀H₃₆ **2** ($\delta_{\text{He}} = -6.1$), for C_3 C₆₀H₃₆ **9** ($\delta_{\text{He}} = -6.8$), and for C_3 C₆₀H₃₆ **11** ($\delta_{\text{He}} = -6.3$) (Figure 1). After purification, the HPLC chromatogram of band C (Figure 8) showed a trailing shoulder, which indicates that at least two isomers elute under this band.

Although $C_{60}H_{36}$ appeared to be the major component of band D, the mass spectrum shows the presence of hydrides other than $C_{60}H_{36}$. The observed $\delta_{He}=-8.1$ shift of band D most closely matches the $\delta_{He}=-8.8$ shift predicted at two levels of theory for T $C_{60}H_{36}$ **5**. If this assignment is correct, it would confirm the prediction that hydrogenation and fluorination of C_{60} favor isostructural products, because T $C_{60}F_{36}$ **5** has been identified as a minor $C_{60}F_{36}$ isomer. 40 T $C_{60}H_{36}$ **5** has also been proposed for $C_{60}H_{36}$ obtained by the Zn/HCl reduction of C_{60} . 21,22 On the other hand, C_3 $C_{60}F_{36}$ **10** was identified as the major $C_{60}F_{36}$ isomer, and consequently, C_3 $C_{60}H_{36}$ **10** is possibly a component of Birch band D. Its calculated 3 He NMR shift (Table 2) is $\delta_{He} = -6.9$. Note that **10** is significantly less stable than **5** (46 kcal mol $^{-1}$), according to our B3LYP/6-31G* computations.

The tentative assignments have been summarized in Table 3. The breadth of the ³He signals suggests that many compounds are actually present in each band. For band D, several sharp signals are also clearly evident above the broad hump. In contrast, previously published ³He NMR spectra of ³He@C₆₀H₃₆

Table 3. Predicted and Experimentally Observed ³He NMR Chemical Shifts (ppm Relative to Free ³He) for C₆₀ Birch Reduction Products

band	obs ³ He chem shift	tent. assignment	predicted ³ He chem shift
A	-3.6 , $\Delta \delta = 0.8$	C ₆₀ H ₃₈ , C ₆₀ H ₄₀	n/a
B	-5.2 , $\Delta \delta = 1.2$	6, 7, 8, 3	-5.1, -5.0, -4.9, -4.7
C	-6.4 , $\Delta \delta = 0.8$	2, 9, 11	-6.1, -6.8, -6.3
D	-8.0 , $\Delta \delta = 0.8$	5, 10	-8.8, -6.9


obtained using the crude product from both the Birch reduction and dihydroanthracene reduction of ${}^{3}\text{He}@C_{60}$ produced two sharp signals at $\delta_{\text{He}} = -7.7$ and $-7.8.^{4}$ These are approximately the same shifts as observed for the relatively broad Birch reduction band D, with any difference in chemical shift attributable to the use of a 1:1 C₆D₆:CS₂ solution in the earlier work. An attempt to obtain ${}^{3}\text{He}$ NMR spectra of Birch reduction band B with a C₆D₆:CS₂ NMR solvent produced no signal at all, a phenomenon that was attributed to decomposition of the sample during the 10-h acquisition time.

Dihydroanthracene Reduction. We also reduced C_{60} by the Rüchardt procedure²⁵ (9,10-dihydroanthracene, DHA) and compared the products with those from the Birch reduction. The HPLC chromatogram of the product mixture is shown in Figure 9.

The bands labeled 1-3 were isolated by HPLC and identified as isomers of $C_{60}H_{36}$ by mass spectroscopy. The major component (band 2) was found to coelute with band D from the Birch reduction (Figure 2). Thus, the major product from the dihydroanthracene reduction can be only a minor constituent of the Birch reduction. Similarly, Rüchardt and co-workers had previously concluded that their work clearly demonstrated that different methods of synthesis prepare quantitatively different mixtures of isomers of $C_{60}H_{36}$. In addition, when Mittal and co-workers compared the spectroscopic properties of $C_{60}H_{36}$ prepared by Zn/HCl reduction against the spectroscopic properties of $C_{60}H_{36}$ that Rüchardt and co-workers had prepared by transfer hydrogenation, many differences were apparent that could reasonably be attributed to isomers having different symmetries forming via the two procedures.

The 3 He NMR spectrum of band 2 (contaminated with 2% band 3) isolated by preparative HPLC is shown in Figure 10. In marked contrast to the broad signals in the 3 He NMR spectra of the Birch reduction products (Figure 7), two sharp signals are observed at $\delta_{\rm He}$ -8.014 and -8.139 (ratio 3:1) in the 3 He NMR spectrum of band 2 of the dihydroanthracene reduction products. Accordingly, just two $C_{60}H_{36}$ isomers in a 3:1 ratio

⁽⁴¹⁾ Palit, D. K.; Mohan, H.; Mittal, J. P. J. Phys. Chem. A 1998, 102, 4456.

Figure 9. HPLC chromatogram of crude C_{60} dihydroanthracene reduction product mixture. The two large leading bands are due to solvent and residual dihydroanthracene and anthracene.

appear to be present. The similarity of these two ³He signals to the two signals reported earlier⁴ suggests that the same two isomers are responsible for the signals in each case.

The ¹³C NMR spectrum of band 2 of the dihydroanthracene reduction products reveals 32 sp²-hybridized carbon signals and 48 sp³-hybridized carbon signals for the solute, with all 80 solute signals having a similar intensity (Figure 11).

This spectrum was obtained in 5.9 h after 1800 scans with a 30° ¹³C pulse, a 6.76-s FID, and a 5-s relaxation delay with decoupling to maximize NOE and S/N (rather than with a substantially longer relaxation delay without decoupling to attenuate NOE for more accurate relative signal intensities, provided that enough scans are taken for adequate S/N). *The observation of 80 solute signals of similar intensity severely limits the types of isomers that might be present.* (Highly expanded plots showing most of the 80 solute signals and their chemical shifts are provided in the Supporting Information.)

Prior work has clearly shown the need to approach the interpretation of spectra of derivatized fullerenes with an open mind (i.e., not with the expectation that a particular isomer will be present) and to be sure that the number of signals observed is consistent with the symmetry point group of the proposed isomer(s) in order to avoid drawing conclusions⁴² that later have to be revised.⁴³

The possibility of a D_{3d} or T_h isomer being present can be immediately excluded, because a D_{3d} isomer would give six signals in a 12:12:12:12:6:6 ratio for the two sp²-hybridized and four sp³-hybridized carbons, but a T_h isomer would give three signals in a 24:24:12 ratio for the sp²-hybridized and two sp³-hybridized carbons.³⁵ Although a T isomer would give 5 signals of equal intensity and a S_6 isomer would give 10 signals of equal intensity,³⁵ neither isomer seems to be present, because it is not then possible to reasonably account for the remaining signals. Specifically, the presence of the T isomer 5 would require assigning the remaining 30 sp²-hybridized and 45 sp³-

hybridized carbon signals for the solute, with all 75 signals having a similar intensity, but no set of $C_{60}H_{36}$ isomers appears to satisfy this constraint; the 3He NMR spectrum imposes the further constraint that just two isomers appear to be present in a 3:1 ratio. Similarly, the presence of the S_6 isomer either 3 or 7 would require assigning the remaining 28 sp²-hybridized and 42 sp³-hybridized carbon signals for the solute, with all 70 signals having a similar intensity, but again, no set of $C_{60}H_{36}$ isomers appears to satisfy this constraint, let alone the constraint imposed by the 3He NMR spectrum.

Four different isomers of C_3 symmetry could account for the 13 C NMR spectrum (4 × 8 sp²-hybridized carbon signals and 4 × 12 sp³-hybridized carbon signals), but this would require that all four isomers be essentially equally abundant and that three of the four isomers have the same 3 He chemical shift. The well-known extraordinary sensitivity of 3 He chemical shifts to the structure of the fullerene in which the 3 He atom is trapped 4,37f,40 makes it extremely unlikely that three isomers will all exhibit the same 3 He chemical shift. Furthermore, all four isomers would have to be essentially equally abundant to satisfy the 13 C spectrum. (Also note that in interpreting the 19 F spectrum of $C_{60}F_{36}$, others had similarly concluded that there was an exceedingly low probability that four components would be present in amounts that would give equal intensities for each line in the 19 F NMR spectrum). 43

In contrast, one isomer with C_1 symmetry (24 sp²-hybridized carbon atoms and 36 sp³-hybridized carbon atoms) and one isomer with C_3 symmetry (8 sp²-hybridized carbon atoms and 12 sp³-hybridized carbon atoms) present in a 3:1 ratio would account for both the ³He and ¹³C spectra.

Highly congested regions are evident in the 13 C spectrum. Indeed, three pairs of 13 C signals differ by no more than 5 ppb (digital resolution of FID = 1.2 ppb, digital resolution = 0.6 ppb after zero-filling once). Very high field homogeneity and very high digital resolution are required to detect such small differences. 44 Of the 32 solute signals for sp²-hybridized carbons, four are rather shielded (at δ 122.40, δ 123.03, δ 124.52, and δ 125.35) when compared to the other 28 signals at δ 133.60 and further downfield. Perhaps the four rather upfield signals result from four isolated double bonds (one C=C in the C_3 symmetry isomer and three C=C in the isomer with C_1 symmetry).

The 500 MHz ¹H spectrum of the C₆₀H₃₆ sample (band 2) prepared by DHA reduction is shown in Figure 12. This spectrum exhibits a level of spectral detail considerably greater than that previously reported at an unspecified field strength for a sample of C₆₀H₃₆ that was prepared by catalytic hydrogenation of C₆₀ over Pd/C in toluene;⁴⁵ however, the overall similarity of the spectra obtained by the two groups is obvious. While Sui and co-workers⁴⁵ did not propose any structures, the spectral similarity suggests that catalytic hydrogenation⁴⁵ and dihydroanthracene reduction yielded very similar products. The level of spectral detail shown in the 500 MHz spectrum (Figure 12) is far greater than that previously shown^{12,21,26-28} or indicated^{1,22,25,46} in ¹H spectra of other samples of C₆₀H₃₆. The instability of solutions of C₆₀H₃₆ isomers, even under an inert atmosphere, has frequently been noted. For example, previous work²¹ has noted that solutions of C₆₀H₃₆ in CS₂ produced a

⁽⁴²⁾ Boltalina, O. V.; Borschevskii, A. Y.; Sidorov, L. N.; Street, J. M.; Taylor, R. Chem. Commun. 1996, 529.

⁽⁴³⁾ Boltalina, O. V.; Street, J. M.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1998, 649.

^{(44) (}a) Maple, S. R.; Allerhand, A. J. Magn. Reson. 1988, 80, 394 and references therein. (b) Alemany, L. B. Magn. Reson. Chem. 1989, 27, 1065. (45) Sui, Y.; Qian, J.; Zhang, J.; Zhou, X.; Gu, Z.; Wu, Y.; Fu, H.; Wang, J. Fullerene Sci. Technol. 1996, 4, 813.

⁽⁴⁶⁾ Gol'dschleger, N. F.; Moravskii, A. P. Russ. Chem. Rev. 1997, 66, 323.

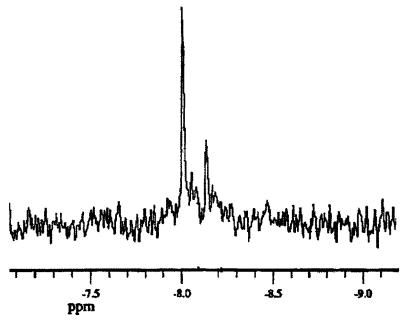


Figure 10. ³He NMR spectrum of band 2 (contaminated with 2% band 3) of the dihydroanthracene reduction of C₆₀.

black precipitate within 5-10 min in air and within 30 min under nitrogen; even if the sample is sealed under nitrogen, the authors noted that the spectra have to be obtained immediately. In contrast, the $C_{60}H_{36}$ isomers from the DHA reduction, as well as the minor products from the Birch reduction, exhibit much greater stability with regard to decomposition in solution. A spectrum identical to that in Figure 12 was obtained several weeks later; this sample of $C_{60}H_{36}$ appears to be stable, unlike many previous samples.

Even a cursory examination of Figure 12, of ¹H spectra of other samples containing predominantly C₆₀H₃₆, ^{12,21,26-28} and of the ¹H chemical shifts for C₆₀H₁₈⁴⁷ indicates that the protons in C₆₀H₃₆ and C₆₀H₁₈ are significantly deshielded, as compared to their counterparts in "ordinary" organic molecules. For example, the benzhydrylic protons in $C_{60}H_{18}$ give a signal at δ 4.49, which is at least 0.5 ppm downfield of benzhydrylic protons in typical organic molecules. Even more noteworthy is the observation that the $C_{60}H_{18}$ protons beta to three benzene rings give a signal at δ 3.95, just 0.20 ppm upfield of the signal from the benzylic (acenaphthene-like) protons and 0.50 ppm downfield of other benzylic protons. Subsequent calculations by Taylor and co-workers⁴⁸ indicated that three relatively long C—C bonds averaging 1.588 Å are associated with the β proton in C₆₀H₁₈. (In contrast, the calculated average C-C bond lengths for the benzhydrylic and two benzylic sites are 1.531, 1.568, and 1.551 Å.) This difference in calculated average C-C bond lengths associated with the β and non- β protons has also been noted by Taylor and co-workers⁴⁸ and by us for C_3 C₆₀H₃₆ **10** and C_3 C₆₀H₃₆ **9** (Table 4). Invariably, the β protons have a considerably longer calculated average C-C bond length.

We believe that the exceptionally deshielded β proton signal in $C_{60}H_{18}$ (δ 3.95) results from the relatively long C—C bonds associated with it in a molecule with substantial conformational rigidity. The observed (isotropic) chemical shift δ_{iso} is the average of the three principal values of the chemical shift tensor: $\delta_{iso} = (\delta_{11} + \delta_{22} + \delta_{33})/3$. The three principal values

lie along three mutually perpendicular directions in space. Thus, if one or more of the principal values are unusually deshielded, this will be reflected in the observed chemical shift. The chemical shift tensor is well-known to be sensitive to local structure; modest changes in bond distances and bond angles can lead to variations in the calculated principal values of the chemical shift tensor and, therefore, in the isotropic chemical shift. Thus, lengthening the C—C bonds associated with the β proton would change the electronic environment around this proton, thereby changing its chemical shift. Indeed, a calculated structure for $C_{60}H_{18}$ is not at all spherical. Rather, the calculated structure is nearly flat around the central benzene ring surrounded by the "crown" of CH units. Rather, the

Preliminary calculations of ^{1}H chemical shifts in $C_{60}H_{36}$ **9** and $C_{60}H_{36}$ **10** also indicate that exceptionally deshielded β proton signals are associated with sites having relatively long C—C bonds. These preliminary calculations indicate that the four sites with calculated average C—C bond lengths of 1.596—1.604 Å (Table 4) should have chemical shifts from 3.8 to 4.0 ppm, and the three sites with calculated average C—C bond lengths of 1.581—1.589 Å should have chemical shifts from 3.1 to 3.4 ppm. Substantial intensity is observed in each of these regions (Figure 12). Additional calculations of C—C bond lengths and ^{1}H chemical shifts in other $C_{60}H_{36}$ isomers are planned to determine if any other isomers of $C_{60}H_{36}$ can be expected to exhibit unusually deshielded proton signals.

The unusually deshielded benzhydrylic and acenaphthene-like benzylic proton signals in $C_{60}H_{18}$ (δ 4.49 and δ 4.15), the exceptionally deshielded β proton signal in $C_{60}H_{18}$ (δ 3.95), and our preliminary chemical shift calculations for some isomers of $C_{60}H_{36}$ clearly indicate that the spectrum of $C_{60}H_{36}$ (Figure 12) cannot be interpreted by considering the proton chemical shifts exhibited by "ordinary" organic compounds. Of course, that our sample apparently contains a mixture of an isomer with C_1 symmetry and an isomer with C_3 symmetry in a 3:1 ratio enormously complicates any attempt at interpreting the 1H spectrum. A recent compilation of chemical shift tensors does not include any chemical shift tensor information for aliphatic

⁽⁴⁷⁾ Darwish, A. D.; Avent, A. G.; Taylor, R.; Walton, D. R. M. J. Chem. Soc., Perkin Trans. 2 1996, 2051.

⁽⁴⁸⁾ Jenkins, S.; Heggie, M. I.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 2000, 2415.

⁽⁴⁹⁾ Grant, D. M. Encyclopedia of Nuclear Magnetic Resonance; Wiley: London, 1996; Vol. 2, pp 1298–1321.

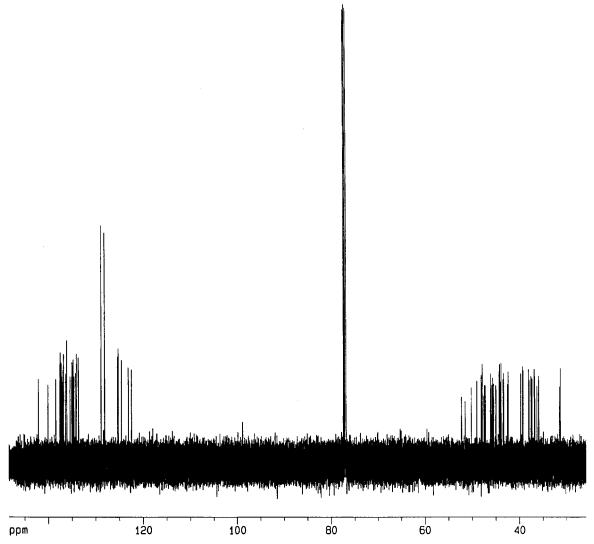


Figure 11. Expanded plot of the 126 MHz ¹³C NMR spectrum of band 2 of the dihydroanthracene reduction of C₆₀. The sample was dissolved in 3:1 CS₂:CDCl₃ containing TMS, repeatedly degassed (freeze-pump-thaw cycles) on a vacuum line, sealed, and then kept in the dark prior to NMR analysis. The three most intense sp²-hybridized carbon signals result from residual toluene (as does as the quaternary signal at δ 137.483) used in the HPLC purification.

methine protons.⁵⁰ In this context, it is interesting to note that significantly deshielded proton signals have been observed not only for $C_{60}H_{18}$ and $C_{60}H_{36}$, but also for dodecahedrane (δ 3.38⁵¹), methyldodecahedrane (a broad singlet also at δ 3.38 for the 16 protons not adjacent to the methyl group⁵²), and the closely related secododecahedrane (a series of multiplets from δ 3.5 to δ 2.9 for the methine protons⁵¹). The dodecahedranes, C₆₀H₁₈, and C₆₀H₃₆ all have substantial conformational rigidity, but dodecahedrane does not have unusual C-C bond lengths and bond angles.⁵³ Thus, a different explanation is needed for its exceptionally deshielded proton signal. The range of ¹H chemical shifts for the methine protons in secododecahedrane⁵¹ clearly demonstrates the great sensitivity of ¹H chemical shifts to small structural perturbations in a compound with substantial conformational rigidity.

Extensive calculations of the relative energies, C-C bond lengths, and chemical shifts of different isomers of C₆₀H₃₆ with C_3 symmetry and with C_1 symmetry (presumably differing in the position of one or two of the isolated double bonds, as in the series C_3 10, C_1 14, C_1 15, C_3 9) will be required to try to find isomers that could reasonably be expected to give the observed ¹H spectrum. For example, preliminary calculations indicate that

•the ³He chemical shifts differ by only 0.2 ppm (cf. the observed 0.1-ppm difference, Figure 10) for the C_3 and C_1 symmetry isomers 9 and 15;

•these two calculated ³He shifts are only 1 ppm more deshielded than the observed signals; and

•only the T isomer 5 has a lower energy than isomers 9 and **15** (Table 1).

However, although C_3 and C_1 symmetry isomers 9 and 15 may be promising candidates, such calculations need to be performed on many more isomers. In addition, the calculated ¹H chemical shifts and potential coupling patterns need to be compared against those actually observed (see below). As Jameson has noted, nuclear magnetic shielding, a second-order molecular electronic property, provides a severe test of the accuracy of molecular quantum mechanical predictions.⁵⁴

⁽⁵⁰⁾ Duncan, T. M. Principal Components of Chemical Shift Tensors: A Compilation, 2nd ed.; The Farragut Press: Madison, WI, 1997; pp H-1-

⁽⁵¹⁾ Paquette, L. A.; Ternansky, R. J.; Balogh, D. W.; Kentgen, G. J. Am. Chem. Soc. 1983, 105, 5446.

⁽⁵²⁾ Paquette, L. A.; Ternansky, R. J.; Balogh, D. W.; Taylor, W. J. J. Am. Chem. Soc. 1983, 105, 5441.

⁽⁵³⁾ Gallucci, J. C.; Doecke, C. W.; Paquette, L. A. J. Am. Chem. Soc. 1986, 108, 1343.

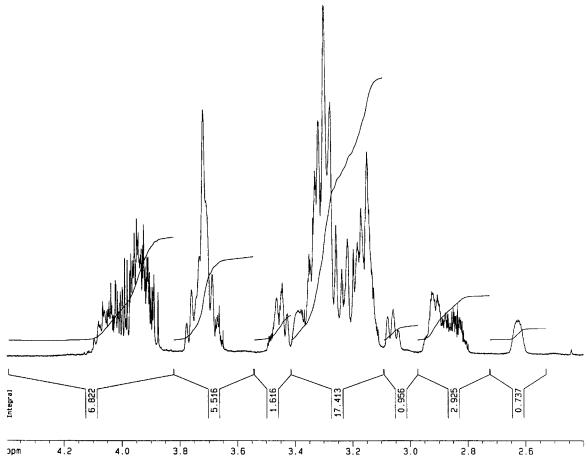


Figure 12. Expanded plot of the 500 MHz ¹H NMR spectrum of band 2 of the dihydroanthracene reduction of C₆₀. The same sample was used to obtain Figure 11.

Table 4. Calculated Average C—C Bond Lengths in C_3 C₆₀H₁₈, C_3 C₆₀H₃₆ **10**, and C_3 C₆₀H₃₆ **9**

type of proton	no. of such protons	calcd ave C—C bond length Å
	C ₆₀ H ₁₈	
beta to 3 benzene rings	1	1.588^{a}
benzylic	3	$1.531 - 1.568^a$
	C ₆₀ H ₃₆ 10	
beta to 2 benzene rings beta to 1 isolated C=C	1	1.586^a
beta to 2 benzene rings	1	1.590^{a}
beta to 1 benzene ring beta to 2 isolated C=C	1	1.580^{a}
beta to 2 isolated C=C	1	1.574^{a}
benzylic and/or allylic	8	$1.521 - 1.558^a$
	C ₆₀ H ₃₆ 10	
beta to 2 benzene rings beta to 1 isolated C=C	1	1.596^{b}
beta to 2 benzene rings	1	1.597^{b}
beta to 1 benzene ring beta to 2 isolated C=C	1	1.589^{b}
beta to 2 isolated C=C	1	1.581^{b}
benzylic and/or allylic	8	$1.530 - 1.567^b$
	$C_{60}H_{36}$ 9	
beta to 2 benzene rings	2	$1.604, 1.599^b$
beta to 1 benzene ring beta to 1 isolated C=C	1	1.589^{b}
benzylic or allylic	9	$1.525 - 1.567^b$

^a Local spin density approximation with pseudopotentials, ref 48.
^b B3LYP/6-31G*, present work.

With the ³He NMR signals for the two isomers differing by only 0.125 ppm, one can reasonably conclude that the two

isomers are similar, and thus, extensive overlap of 1 H signals can certainly be expected. Indeed, for just a single isomer, particularly the isomer with C_{1} symmetry, extensive overlap of 1 H signals could occur. Unfortunately, a method to separate the two isomers is not readily apparent. As a first step toward resolving signals and determining the identity of the two isomers that are present, we have obtained a 900 MHz 1 H spectrum (Figure 13) and 800 MHz COSY and TOCSY spectra (Supporting Information).

The 900 MHz spectrum differs significantly from that obtained at 500 MHz in the region upfield of 3.1 ppm; five signals in a very nearly 1:2:1:1:1 ratio become evident at 900 (or 800) MHz. Even at 500 MHz, the rather broad, upfield, symmetrical signal at δ 2.63 stands out because of its shape and its chemical shift; its intensity is consistent with either (1) 3 equivalent protons in the 25% abundant isomer with C_3 symmetry or (2) 1 of 36 protons in the 75% abundant isomer with C_1 symmetry. The correlations that are observed in the 800 MHz COSY spectrum, particularly those involving the wellresolved proton signals upfield of 3.1 ppm, will serve as a critical test of the chemical shifts calculated for the different protons in various isomers. The connectivity patterns for coupled spin systems observed in the 800 MHz TOCSY spectrum will serve as an additional test; obtaining TOCSY spectra with different spin lock times to follow the magnetization transfer pathway should allow the connectivity patterns to be more easily recognized.

⁽⁵⁴⁾ Jameson, C. J. *Encyclopedia of Nuclear Magnetic Resonance*; Wiley: London, 1996; Vol. 2, pp 1273–1281.

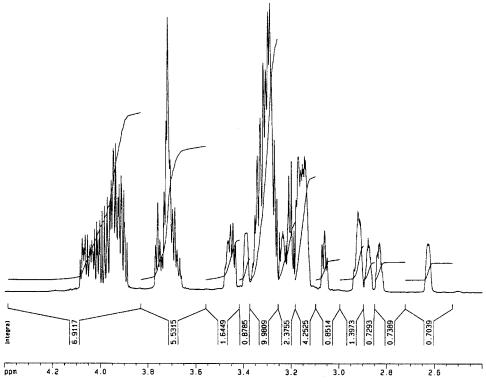


Figure 13. Expanded plot of the 900 MHz 1 H NMR spectrum of band 2 of the dihydroanthracene reduction of C_{60} . (The same sample was used to obtain the 11.7 T 13 C and 1 H spectra shown in Figures 11 and 12.)

Other preliminary attempts at obtaining a detailed understanding of the $^1\mathrm{H}$ and $^{13}\mathrm{C}$ spectra have been made by obtaining $^1\mathrm{H}{-}^{13}\mathrm{C}$ HSQC and HMBC spectra. The HSQC spectrum (optimized for $^1J_{\mathrm{CH}}=145$ Hz) clearly shows correlations between many of the most deshielded protons and many of the most deshielded aliphatic carbons. The HMBC spectrum (optimized for $^nJ_{\mathrm{CH}}=7.6$ Hz, i.e., a 65-ms delay for evolution of long-range couplings) clearly shows much stronger contours between sp²-hybridized carbons and the most deshielded protons than between sp²-hybridized carbons and the more upfield protons. Clearly, the relative intensities of the contours in the HSQC and HMBC spectra are sensitive to the time allowed for couplings to evolve, and thus, these preliminary HSQC and HMBC experiments should not be overinterpreted. At this point, the 1D $^{13}\mathrm{C}$ and $^3\mathrm{He}$ spectra are far more significant.

Numerous calculations, $^{6-11,14,16,35,36}$ particularly at higher levels of theory (e.g., Table 1), indicate that $TC_{60}H_{36}$ **5** is among the most stable $C_{60}H_{36}$ isomers, but it has yet to be unequivocally detected. These calculations, the observation that a $C_{60}H_{36}$ isomer with C_1 symmetry is 75% abundant, and the absence of the long-expected 2,34,40 $TC_{60}H_{36}$ **5** all suggest that a significant energy barrier exists in the dihydroanthracene reduction of C_{60} for the conversion of the C_3 and C_1 symmetry isomers of $C_{60}H_{36}$ to $TC_{60}H_{36}$ **5**. A remarkable difference between $C_{60}H_{36}$ and $C_{60}F_{36}$ is the reported presence of the T isomer (about 25%) for $C_{60}F_{36}$. Calculations indicate that $TC_{60}F_{36}$ **5** is among the most stable $C_{60}F_{36}$ isomers. 11,14 (The remaining 75% of the $C_{60}F_{36}$ sample was assigned to the C_3 isomer **10**.)

Changing the position of one or two isolated double bonds in an isomer of $C_{60}H_{36}$ with a symmetry axis so as to generate a structure with C_1 symmetry does not necessarily raise the energy. The calculations by Clare and Kepert¹⁴ indicate that the 9th- and 11th-lowest-energy isomers of $C_{60}H_{36}$ have C_1 symmetry. The ninth-lowest-energy isomer is **13**, which is the least stable isomer considered in this work (Table 1). Other calculations by Clare and Kepert¹⁰ indicate that moving two of

the isolated double bonds in two relatively high energy C_3 $C_{60}H_{36}$ isomers results in lower-energy isomers with C_1 symmetry. Note, though, that moving all three of the isolated double bonds in the C_3 $C_{60}H_{36}$ isomers considered by Clare and Kepert¹⁰ would give still more stable structures **2** and **5**. For $C_{60}F_{36}$, the calculations by Clare and Kepert¹⁴ have shown a case where the energy also decreases upon rearrangement (specifically, $C_{60}F_{36}$ isomers **76** and **79**, where the isomer **79** generated by an unsymmetrical shift of double bonds in T $C_{60}F_{36}$ **5** is calculated to be 10 kcal mol⁻¹ more stable than the isomer **76** generated by a symmetrical shift of double bonds).

The major product from the dihydroanthracene reduction can be only a minor constituent of the Birch reduction. In light of the observations noted above by the Rüchardt^{30,31} and Mittal⁴¹ groups on different synthetic procedures yielding different mixtures of isomers of $C_{60}H_{36}$, one clearly can no longer assume that C_3 $C_{60}H_{36}$ **10** and T $C_{60}H_{36}$ **5** form in analogy to the C_3 $C_{60}H_{36}$ **10** and T $C_{60}F_{36}$ **5** generated upon fluorination with MnF₃.⁴⁰ We also note that Lobach¹² reached the conclusion that T $C_{60}H_{36}$ **5** is the major isomer produced in the dihydroanthracene reduction of C_{60} . Rüchardt and co-workers, however, have shown^{30,31} that the composition of the mixture of products is dependent on the conditions employed during purification by sublimation. This indicates that prolonged heating of the product might lead to unreliable analysis.

Clearly, a combination of energy, bond length, and chemical shift calculations; 2D COSY and TOCSY ultrahigh-field ¹H spectra; and heteronuclear chemical shift correlation experiments to be done with unusually high digital resolution in the ¹³C dimension are required for a more detailed interpretation. A 2D ¹³C-¹³C INADEQUATE experiment to determine the ¹³C-¹³C connectivity pattern for each isomer would be enormously helpful—provided that all the coupled nuclei are AX (rather than AB) pairs.⁵⁵ Obtaining such a spectrum with the very high digital

⁽⁵⁵⁾ Hawkins, J. M.; Loren, S.; Meyer, A.; Nunlist, R. J. Am. Chem. Soc. 1991, 113, 7770.

resolution required in each dimension on just a few milligrams of this mixture would clearly present a formidable sensitivity challenge, even with the recent developments in cryogenic probe and preamplifier technology.⁵⁶

Clearly, we cannot rule out the presence of any minor isomers for which signals are not readily detectable above the noise level in the ³He and ¹³C NMR spectra. Any such isomers would give detectable ¹H signals, but at this point, we have no way of recognizing them. The best way to pursue this matter would be to obtain ³He and ¹³C NMR spectra with much higher S/N.

Conclusion

We have shown that the Birch reduction gives a complex mixture of $C_{60}H_{36}$ isomers. The transfer hydrogenation method of Rüchardt gives mainly two in a 3:1 ratio. The isomers from the transfer hydrogenation route are found to constitute only a small part of the Birch product. Further work will be required to assign definitive structures to the products from the various methods that have been used to synthesize these hydrides. The synthesis of derivatives that will allow structural characterization by X-ray analysis probably has the greatest promise.

Experimental Section

NMR Spectroscopy. Solution state ¹H and ¹³C NMR spectra were recorded at Rice University using Bruker 400 and 500 MHz spectrometers and at Bruker (Rheinstetten) using Bruker 800 and 900 MHz spectrometers. Standard broadband observe probes were used to obtain the ¹H and ¹³C spectra on the 400 and 500 MHz spectrometers; an inverse probe with a z-axis gradient coil was used to obtain gradientenhanced COSY, HSQC, and HMBC spectra on the 500 MHz spectrometer; and a triple resonance, inverse probe with a z-axis gradient coil was used to obtain spectra on the 800 and 900 MHz spectrometers. High-precision Wilmad 535-PP NMR tubes were employed. The spectroscopic parameters were particularly optimized for the ¹H and ¹³C NMR experiments on the dihydroanthracene reduction products. For example, a relatively narrow 13 C spectral width (covering from δ 170 to δ -10), a digital filter to suppress the intense CS₂ signal at δ 192, and 256 K data points were used so as to achieve a digital resolution of 0.15 Hz (1.2 ppb) over the spectral region of interest. No line-broadening was used. The FID was zero-filled once. Solid state ¹³C NMR spectra were recorded at Rice University using a Bruker 200 MHz spectrometer with magic angle spinning at 7 kHz, $^{1}\text{H}-^{13}\text{C}$ cross polarization for 1 ms, and a 5-s relaxation delay, following FID acquisition. Glycine was used as an external chemical shift reference. The ³He NMR spectra were recorded at Yale University in odichlorobenzene-d₄ using a Bruker 500 MHz spectrometer (³He at 381

Other Spectroscopy and Chromatography. Mass spectra were obtained using a Finnigan MAT 95 spectrometer. FT-IR spectra were acquired using a Nicolet Magna-IR 760 spectrophotometer. UV—vis spectra were generated using a Hewlett-Packard 8452A Diode Array Photometer. HPLC analyses were performed using a Waters 501 Pump and a Waters 486 tunable absorbance detector connected to a Waters data module equipped with a 10 mm \times 25 cm Buckyclutcher I

(56) (a) Hajduk, P. J.; Gerfin, T.; Boehlen, J.-M.; Häberli, M.; Marek, D.; Fesik, S. W. J. Med. Chem. 1999, 42, 2315. (b) Logan, T. M.; Murali, N.; Wang, G.; Jolivet, C. Magn. Reson. Chem. 1999, 37, 762. (c) Bringmann, G.; Wohlfarth, M.; Rischer, H.; Grüne, M.; Schlauer, J. Angew. Chem., Int. Ed. 2000, 39, 1464. (d) Serber, Z.; Richter, C.; Moskau, D.; Böhlen, J.-M.; Gerfin, T.; Marek, D.; Häberli, M.; Baselgia, L.; Laukien, F.; Stern, A. S.; Hoch, J. C.; Dötsch, V. J. Am. Chem. Soc. 2000, 122, 3554. (e) Flynn, P. F.; Mattiello, D. L.; Hill, H. D. W.; Wand, A. J. J. Am. Chem. Soc. 2000, 122, 4823. (f) Russell, D. J.; Hadden, C. E.; Martin, G. E.; Gibson, A. A.; Zens, A. P.; Carolan, J. L. J. Nat. Prod. 2000, 63, 1047. (g) Wu, M.; Okino, T.; Nogle, L. M.; Marquez, B. L.; Williamson, R. T.; Sitachitta, N.; Berman, F. W.; Murray, T. F.; McGough, K.; Jacobs, R.; Colsen, K.; Asano, T.; Yokokawa, F.; Shioiri, T.; Gerwick W. H. J. Am. Chem. Soc. 2000, 122, 12041. (h) Serber, Z.; Keatinge-Clay, A. T.; Ledwidge, R.; Kelly, A. E.; Miller, S. M.; Dötsch, V. J. Am. Chem. Soc. 2001, 123, 2446.

stationary phase column using a toluene/hexanes (70/30) isocratic mobile phase. A flow rate of 4.0 mL/min and a wavelength (λ) of 280 nm were employed. HPLC-grade solvents purchased from Fisher Scientific were used for all of the chromatography. All other chemicals were of reagent quality and were used as received from the manufacturer. Reactions were carried out under inert atmospheres.

Birch Reduction of C₆₀. C₆₀ (100 mg, 0.139 mmol) was placed in a dry 100-mL three-neck round-bottom flask equipped with a dry ice condenser and a magnetic stirrer bar. One neck of the flask was sealed, and the other was equipped with an adapter for introducing ammonia. The flask was placed into a dry ice-acetone bath, and the apparatus was flushed with argon for 40 min. The condenser was then filled with dry ice−acetone, and ~70 mL of ammonia was condensed in the flask. Small pieces of clean lithium (400 mg, 57.6 mmol) were then added to the flask. The dissolution of the lithium metal produced a deep bluepurple color upon slow stirring of the suspension. The dry ice-acetone bath was removed from the three-neck flask, and 5 mL of distilled and dry tert-butyl alcohol was added to the reaction mixture. The solution was refluxed for 8-10 h at -33 °C, refilling the dry ice condenser as needed. After the reaction, the ammonia was allowed to evaporate completely, leaving behind a blue-gray residue. The flask was then cooled in an ice bath and equipped with a 100-mL dropping funnel filled with distilled water while maintaining the flow of argon gas. Excess lithium metal was destroyed by slow addition of water. The water layer was extracted with freshly distilled benzene (2 \times 100 mL) and dried over sodium sulfate to obtain a clear yellow solution. The solvent was stripped under vacuum and without the use of heat to obtain a white-yellow amorphous powder. The product was then analyzed by HPLC, and four bands were isolated by preparative HPLC using the Buckyclutcher I preparative column.

Band A. (4.9 min, retention time) was 6% of the mixture by HPLC analysis. 1 H NMR (400 MHz, o-C₆D₄Cl₂): broad signal centered at 3.2 ppm ($\Delta\delta=0.9$ ppm). 3 He NMR (381 MHz, o-C₆D₄Cl₂): $\delta_{\text{He}}-3.2$ to -4.0 (broad singlet). FD-MS for C₆₀H₃₈: calculated, 758.3; found, 758.4. FD-MS for C₆₀H₄₀: calcd, 760.3; found, 760.5.

Band B. (5.6 min, retention time) was 21% of the mixture by HPLC analysis. 1 H NMR (400 MHz, o-C₆D₄Cl₂): broad signal centered at 3.3 ppm ($\Delta\delta=0.9$ ppm). Solid state 13 C NMR (50 MHz): broad signals centered at \sim 133 and 40 ppm. 3 He NMR (381 MHz, o-C₆D₄Cl₂): δ_{He} –4.6 to –5.8 (broad singlet). UV–vis (acetonitrile): 206, 218, 274 nm. IR (KBr): 2914, 2843 (sh), 1737, 1598, 1496, 1465, 1350, 1260, 1081, 1030, 899, 805, 728, 689 cm $^{-1}$. FD-MS: calcd, 756.3; found, 756.3.

Band C. (6.7 min, retention time) was 44% of the mixture by HPLC analysis. 1 H NMR (400 MHz, o-C₆D₄Cl₂): broad signal centered at 3.25 ppm ($\Delta\delta$ = 0.95 ppm). Solid state 13 C NMR (50 MHz): broad signals centered at \sim 133 and 40 ppm. 3 He NMR (381 MHz, o-C₆D₄-Cl₂): δ_{He} = -6.0 to -6.8 (broad singlet). UV-vis (acetonitrile): 204, 208, 212, 244, 250, 254, 260, 284 nm. IR (KBr): 2920, 2858, 1742, 1603, 1495, 1460, 1265, 1102, 1030, 880, 805, 733, 702 cm⁻¹. FD-MS: calcd, 756.3: found, 756.1.

Band D. (8.3 min, retention time) was 23% of the mixture by HPLC analysis. 1 H NMR (400 MHz, o-C₆D₄Cl₂): broad signal centered at 3.4 ppm ($\Delta\delta=1.0$ ppm). 3 He NMR (381 MHz, o-C₆D₄Cl₂): δ_{He} –7.6 to -8.4 (broad singlet). FD-MS calcd, 756.3; found, 756.3; FD-MS for C₆₀H₃₂: calcd, 752.3; found, 752.4.

Reduction of C₆₀ **by 9,10-Dihydroanthracene.** C₆₀ (100 mg, 0.139 mmol) was mixed with freshly crystallized and dried dihydroanthracene (3 g, 16.67 mmol) and sealed under vacuum in a Pyrex tube (1/4 filled). The contents of the tube were heated at 350 °C for 45 min. The color of the melt changed from dark violet to brown, ruby-red, orange, yellow, and finally, colorless white. The tube was allowed to cool with the melt on one end. The tube was opened and the contents scratched out with a spatula. The contents were dissolved in ether (50 mL) and filtered on a PTFE filter paper (0.1 μ). Only dihydroanthracene was dissolved in ether, leaving C₆₀H₃₆ lumps on the filter paper. The contents were again suspended from filter paper in ether (50 mL) and filtered, affording a mixture of isomers of C₆₀H₃₆ (70 mg). Finally, the light yellow-colored product was purified by preparative HPLC on a Buckyclutcher I column with toluene/hexane (70:30) as eluent. This workup has the advantage over previous methods that employ sublima-

tion to get rid of dihydroanthracene, because they destroy most of the C₆₀H₃₆ isomers, change the relative abundance of isomers, and probably result in isomerization, as well.

Band 2 (Major Isomer). 7.0-min retention time by HPLC analysis. ¹H NMR (500 MHz, CS₂/CDCl₃, 3:1): 2.58-2.67 (m), 2.78-2.96 (m), 3.03-3.11 (m), 3.12-3.41 (m), 3.41-3.51 (m), 3.64-3.79 (m), 3.88-4.13 (m); ¹³C NMR (126 MHz): 142.047, 140.054, 138.470, 137.489, 137.416, 137.245, 137.231, 137.126, 137.006, 136.884, 136.737, 136.341, 136.063, 135.365, 135.037, 134.973, 134.935, 134.827, 134.728, 134.716, 134.699, 134.515, 134.184, 134.161, 134.057, 134.045, 134.044, 133.597, 125.351, 124.522, 123.034, 122.395, 52.203, 51.423, 50.142, 48.990, 48.941, 48.061, 48.039, 47.822, 47.498, 47.351, 47.166, 46.092, 45.791, 45.630, 45.434, 44.966, 44.913, 44.280, 44.156, 44.151, 44.004, 43.938, 43.850, 43.846, 43.417, 43.345, 42.523, 42.343, 39.720, 39.296, 39.203, 38.031, 37.937, 37.551, 37.485, 37.305, 36.810, 36.794, 36.773, 36.718, 36.268, 35.968, 35.944, 35.887, 31.459, 31.292, 31.277, 31.243. ³He NMR (381 MHz, o-C₆D₄Cl₂): δ_{He} -8.014 and -8.139 (ratio 3:1). IR (KBr): 2909, 2844, 1491, 1340, 1316, 1261, 1236, 1178, 742, 698 cm⁻¹. FD-MS for C₆₀H₃₆: calcd, 756.3; found, 756.5.

Band 3 (Minor Isomer). 7.5-min retention time by HPLC analysis. ¹H NMR (500 MHz, CS₂/CDCl₃, 3:1): δ 2.6–4.1 (complex multiplet). ³He NMR (381 MHz, o-C₆D₄Cl₂): δ_{He} -8.149.

Theoretical Methods. The geometries of C₆₀H₃₆ and He@C₆₀H₃₆ isomers were optimized using Becke's⁵⁷ three parameter hybrid exchange functional as implemented in the Gaussian⁵⁸ program and the correlation functional of Lee et al.⁵⁹ in conjunction with a 6-31G* basis set (B3LYP/6-31G*). The He atom was put at the center of mass of the B3LYP/6-31G* optimized C₆₀H₃₆ in order to preserve the molecular point group symmetry of the hydrofullerene. The obtained He@C₆₀H₃₆ was reoptimized at the B3LYP/6-31G* level of theory. The magnetic shielding was computed at the B3LYP level of theory using the gauge-invariant atomic orbitals (GIAO) approach as implemented by Wolinski et al.⁶⁰ The magnetic shielding computations were performed at the optimized B3LYP/6-31G* geometries using Dun-

(57) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

ning's 61 double- ζ basis set with one set of polarization functions (DZP) on carbon ($\alpha_d = 0.75$) and hydrogen ($\alpha_p = 0.75$), and the polarized $(\alpha_p = 1.00)$ valence triple- ζ quality [5s]/(3s) basis set (tzp) of Schäfer et al.⁶² for He. All computations were performed by using a development version of Gaussian⁵⁸ on Intel Pentium III 733 MHz computers.

Acknowledgment. We gratefully acknowledge financial support from the National Science Foundation (CHE 9710042 and CHE 99821565) and the Robert A. Welch Foundation. We thank Professor Peter Wright at the Scripps Research Institute for allowing us to use the 900 MHz spectrometer for comparison purposes.

Supporting Information Available: Highly expanded plots of the 126 MHz ¹³C spectrum of the dihydroanthracene reduction products (4 figures) and the 800 MHz COSY and TOCSY spectra of these products. The figures are available on the Internet at http://pubs.acs.org.

JA0108180

- (58) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Adamo, C.; Jaramillo, J.; Cammi, R.; Pomelli, C.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A., Gaussian 99, Development Version (Revision B.08+).
- (59) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (60) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112,
 - (61) Dunning, T. H. J. Chem. Phys. 1970, 53, 2823.
- (62) Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571.